求函数的左右导数可以用定义求左右导数,如果左右导数存在且都是A,则导数是A。这样做的好处是避免出错,如果想用左右对应法则的导函数来求,可用导数极限定理:f(x)在x0的邻域内连续,在去心邻域内可导,lim(x→x0 f'(x)=A,则f'(x0)=A。
1导数的极限和左右导数的区别
区别在于:定义不同、作用不同、性质不同。
1、定义不同:导数极限的思想为近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科;左右导数,也叫导函数值,为微积分中的重要基础概念。
2、作用不同:利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念;左右导数只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。